Applied Machine Learning for Tabular Data

Authors

Max Kuhn

Kjell Johnson

Published

2025-04-20

Preface

To run this reprex, you should only need:

pak::pak(
  c("glue", "gt", "gtExtras", "knitr", "patchwork", "scales", "sessioninfo",
    "tidymodels")
)

Computing Notes

Quarto was used to compile and render the materials

Quarto 1.7.27
[✓] Checking environment information...
[✓] Checking versions of quarto binary dependencies...
      Pandoc version 3.6.3: OK
      Dart Sass version 1.85.1: OK
      Deno version 1.46.3: OK
      Typst version 0.13.0: OK
[✓] Checking versions of quarto dependencies......OK
[✓] Checking Quarto installation......OK
      Version: 1.7.27
[✓] Checking tools....................OK
      TinyTeX: (external install)
      Chromium: (not installed)
[✓] Checking LaTeX....................OK
      Using: TinyTex
      Version: 2024
[✓] Checking Chrome Headless....................OK
      Using: Chrome found on system
      Source: MacOS known location
[✓] Checking basic markdown render....OK
[✓] Checking Python 3 installation....OK
      Version: 3.9.18
      Jupyter: (None)
      Jupyter is not available in this Python installation.
[✓] Checking R installation...........OK
      Version: 4.4.2
      LibPaths:
        - /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library
      knitr: 1.49
      rmarkdown: 2.27
[✓] Checking Knitr engine render......OK

R version 4.4.2 (2024-10-31) was used for the majority of the computations. torch 2.5.1 was also used. The versions of the primary R modeling and visualization packages used here are:

aorsf (0.1.5) applicable (0.1.1) aspline (0.2.0)
baguette (1.1.0) bestNormalize (1.9.1) bibtex (0.5.1)
bonsai (0.3.2) broom (1.0.8) broom.mixed (0.2.9.5)
brulee (0.4.0.9000) bslib (0.7.0) C50 (0.1.8)
colino (0.0.1) Cubist (0.4.4) DALEXtra (2.3.0)
dbarts (0.9-30) ddalpha (1.3.15) desirability2 (0.0.1)
dials (1.4.0) dimRed (0.2.6) discrim (1.0.1)
doMC (1.3.8) dplyr (1.1.4.9000) e1071 (1.7-14)
earth (5.3.4) embed (1.1.5) emmeans (1.11.0)
fastICA (1.2-5.1) finetune (1.2.0) forested (0.1.0)
GA (3.2.4) gganimate (1.0.9) ggforce (0.4.2)
ggiraph (0.8.9) ggplot2 (3.5.2) glmnet (4.1-8)
gt (0.10.1) hardhat (1.4.1) heatmaply (1.5.0)
hstats (1.2.2) ipred (0.9-15) irlba (2.3.5.1)
janitor (2.2.0) kernlab (0.9-33) kknn (1.3.1)
klaR (1.7-3) leaflet (2.2.2) lightgbm (4.5.0)
lme4 (1.1-35.5) Matrix (1.7-1) mda (0.5-5)
measure (0.0.1.9000) mgcv (1.9-1) mixdir (0.3.0)
mixOmics (6.31.4) modeldata (1.4.0) modeldatatoo (0.3.0)
naniar (1.1.0) pamr (1.56.2) parsnip (1.3.1)
partykit (1.2-22) patchwork (1.3.0) plsmod (1.0.0.9000)
probably (1.0.3) pROC (1.18.5) purrr (1.0.4.9000)
ragg (1.3.1) ranger (0.17.0) recipes (1.3.0)
rpart (4.1.24) rsample (1.3.0) RSpectra (0.16-2)
rstudioapi (0.17.1) rules (1.0.2) sf (1.0-20)
sfd (0.1.0) shinylive (0.1.1) sparsediscrim (0.3.0)
sparseLDA (0.1-9) sparsevctrs (0.3.3) spatialsample (0.6.0)
splines2 (0.5.3) stacks (1.0.5) stopwords (2.3)
textrecipes (1.1.0) themis (1.0.3) tidymodels (1.2.0)
tidyposterior (1.0.1) tidyr (1.3.1.9000) tidysdm (0.9.5)
torch (0.14.2) tune (1.3.0) usethis (2.2.3)
uwot (0.2.2) VBsparsePCA (0.1.0) viridis (0.6.5)
workflows (1.2.0) workflowsets (1.1.0) xgboost (1.7.8.1)
xrf (0.2.2) yardstick (1.3.2)

Chapter References