pak::pak(
c("glue", "gt", "gtExtras", "knitr", "patchwork", "scales", "sessioninfo",
"tidymodels")
)Applied Machine Learning for Tabular Data
Preface
To run this reprex, you should only need:
Computing Notes
Quarto was used to compile and render the materials
Quarto 1.7.27
[✓] Checking environment information...
[✓] Checking versions of quarto binary dependencies...
Pandoc version 3.6.3: OK
Dart Sass version 1.85.1: OK
Deno version 1.46.3: OK
Typst version 0.13.0: OK
[✓] Checking versions of quarto dependencies......OK
[✓] Checking Quarto installation......OK
Version: 1.7.27
[✓] Checking tools....................OK
TinyTeX: (external install)
Chromium: (not installed)
[✓] Checking LaTeX....................OK
Using: TinyTex
Version: 2024
[✓] Checking Chrome Headless....................OK
Using: Chrome found on system
Source: MacOS known location
[✓] Checking basic markdown render....OK
[✓] Checking Python 3 installation....OK
Version: 3.9.18
Jupyter: (None)
Jupyter is not available in this Python installation.
[✓] Checking R installation...........OK
Version: 4.4.2
LibPaths:
- /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library
knitr: 1.49
rmarkdown: 2.27
[✓] Checking Knitr engine render......OK
R version 4.4.2 (2024-10-31) was used for the majority of the computations. torch 2.5.1 was also used. The versions of the primary R modeling and visualization packages used here are:
aorsf (0.1.5) |
applicable (0.1.1) |
aspline (0.2.0) |
baguette (1.1.0) |
bestNormalize (1.9.1) |
bibtex (0.5.1) |
bonsai (0.3.2) |
broom (1.0.8) |
broom.mixed (0.2.9.5) |
brulee (0.4.0.9000) |
bslib (0.7.0) |
C50 (0.1.8) |
colino (0.0.1) |
Cubist (0.4.4) |
DALEXtra (2.3.0) |
dbarts (0.9-30) |
ddalpha (1.3.15) |
desirability2 (0.0.1) |
dials (1.4.0) |
dimRed (0.2.6) |
discrim (1.0.1) |
doMC (1.3.8) |
dplyr (1.1.4.9000) |
e1071 (1.7-14) |
earth (5.3.4) |
embed (1.1.5) |
emmeans (1.11.0) |
fastICA (1.2-5.1) |
finetune (1.2.0) |
forested (0.1.0) |
GA (3.2.4) |
gganimate (1.0.9) |
ggforce (0.4.2) |
ggiraph (0.8.9) |
ggplot2 (3.5.2) |
glmnet (4.1-8) |
gt (0.10.1) |
hardhat (1.4.1) |
heatmaply (1.5.0) |
hstats (1.2.2) |
ipred (0.9-15) |
irlba (2.3.5.1) |
janitor (2.2.0) |
kernlab (0.9-33) |
kknn (1.3.1) |
klaR (1.7-3) |
leaflet (2.2.2) |
lightgbm (4.5.0) |
lme4 (1.1-35.5) |
Matrix (1.7-1) |
mda (0.5-5) |
measure (0.0.1.9000) |
mgcv (1.9-1) |
mixdir (0.3.0) |
mixOmics (6.31.4) |
modeldata (1.4.0) |
modeldatatoo (0.3.0) |
naniar (1.1.0) |
pamr (1.56.2) |
parsnip (1.3.1) |
partykit (1.2-22) |
patchwork (1.3.0) |
plsmod (1.0.0.9000) |
probably (1.0.3) |
pROC (1.18.5) |
purrr (1.0.4.9000) |
ragg (1.3.1) |
ranger (0.17.0) |
recipes (1.3.0) |
rpart (4.1.24) |
rsample (1.3.0) |
RSpectra (0.16-2) |
rstudioapi (0.17.1) |
rules (1.0.2) |
sf (1.0-20) |
sfd (0.1.0) |
shinylive (0.1.1) |
sparsediscrim (0.3.0) |
sparseLDA (0.1-9) |
sparsevctrs (0.3.3) |
spatialsample (0.6.0) |
splines2 (0.5.3) |
stacks (1.0.5) |
stopwords (2.3) |
textrecipes (1.1.0) |
themis (1.0.3) |
tidymodels (1.2.0) |
tidyposterior (1.0.1) |
tidyr (1.3.1.9000) |
tidysdm (0.9.5) |
torch (0.14.2) |
tune (1.3.0) |
usethis (2.2.3) |
uwot (0.2.2) |
VBsparsePCA (0.1.0) |
viridis (0.6.5) |
workflows (1.2.0) |
workflowsets (1.1.0) |
xgboost (1.7.8.1) |
xrf (0.2.2) |
yardstick (1.3.2) |