All functions

center_data()

Centers the observations in a matrix by their respective class sample means

cov_autocorrelation()

Generates a \(p \times p\) autocorrelated covariance matrix

cov_block_autocorrelation()

Generates a \(p \times p\) block-diagonal covariance matrix with autocorrelated blocks.

cov_eigen()

Computes the eigenvalue decomposition of the maximum likelihood estimators (MLE) of the covariance matrices for the given data matrix

cov_intraclass()

Generates a \(p \times p\) intraclass covariance matrix

cov_list()

Computes the covariance-matrix maximum likelihood estimators for each class and returns a list.

cov_mle()

Computes the maximum likelihood estimator for the sample covariance matrix under the assumption of multivariate normality.

cov_pool()

Computes the pooled maximum likelihood estimator (MLE) for the common covariance matrix

cov_shrink_diag()

Computes a shrunken version of the maximum likelihood estimator for the sample covariance matrix under the assumption of multivariate normality.

cv_partition()

Randomly partitions data for cross-validation.

diag_estimates()

Computes estimates and ancillary information for diagonal classifiers

dmvnorm_diag()

Computes multivariate normal density with a diagonal covariance matrix

generate_blockdiag()

Generates data from K multivariate normal data populations, where each population (class) has a covariance matrix consisting of block-diagonal autocorrelation matrices.

generate_intraclass()

Generates data from K multivariate normal data populations, where each population (class) has an intraclass covariance matrix.

h()

Bias correction function from Pang et al. (2009).

lda_diag() predict(<lda_diag>)

Diagonal Linear Discriminant Analysis (DLDA)

lda_eigen() predict(<lda_eigen>)

The Minimum Distance Rule using Moore-Penrose Inverse (MDMP) classifier

lda_emp_bayes() predict(<lda_emp_bayes>)

The Minimum Distance Empirical Bayesian Estimator (MDEB) classifier

lda_emp_bayes_eigen() predict(<lda_emp_bayes_eigen>)

The Minimum Distance Rule using Modified Empirical Bayes (MDMEB) classifier

lda_pseudo() predict(<lda_pseudo>)

Linear Discriminant Analysis (LDA) with the Moore-Penrose Pseudo-Inverse

lda_schafer() predict(<lda_schafer>)

Linear Discriminant Analysis using the Schafer-Strimmer Covariance Matrix Estimator

lda_shrink_cov() predict(<lda_shrink_cov>)

Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA)

lda_shrink_mean() predict(<lda_shrink_mean>)

Shrinkage-mean-based Diagonal Linear Discriminant Analysis (SmDLDA) from Tong, Chen, and Zhao (2012)

lda_thomaz() predict(<lda_thomaz>)

Linear Discriminant Analysis using the Thomaz-Kitani-Gillies Covariance Matrix Estimator

log_determinant()

Computes the log determinant of a matrix.

no_intercept()

Removes the intercept term from a formula if it is included

plot(<rda_high_dim_cv>)

Plots a heatmap of cross-validation error grid for a HDRDA classifier object.

posterior_probs()

Computes posterior probabilities via Bayes Theorem under normality

qda_diag() predict(<qda_diag>)

Diagonal Quadratic Discriminant Analysis (DQDA)

qda_shrink_cov() predict(<qda_shrink_cov>)

Shrinkage-based Diagonal Quadratic Discriminant Analysis (SDQDA)

qda_shrink_mean() predict(<qda_shrink_mean>)

Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis (SmDQDA) from Tong, Chen, and Zhao (2012)

quadform()

Quadratic form of a matrix and a vector

quadform_inv()

Quadratic Form of the inverse of a matrix and a vector

rda_cov()

Calculates the RDA covariance-matrix estimators for each class

rda_high_dim() predict(<rda_high_dim>)

High-Dimensional Regularized Discriminant Analysis (HDRDA)

rda_high_dim_cv()

Helper function to optimize the HDRDA classifier via cross-validation

rda_weights()

Computes the observation weights for each class for the HDRDA classifier

regdiscrim_estimates()

Computes estimates and ancillary information for regularized discriminant classifiers

risk_stein()

Stein Risk function from Pang et al. (2009).

solve_chol()

Computes the inverse of a symmetric, positive-definite matrix using the Cholesky decomposition

tong_mean_shrinkage()

Tong et al. (2012)'s Lindley-type Shrunken Mean Estimator

two_class_sim_data

Example bivariate classification data from caret

update_rda_high_dim()

Helper function to update tuning parameters for the HDRDA classifier

var_shrinkage()

Shrinkage-based estimator of variances for each feature from Pang et al. (2009).